If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8p^2+6p-6=0
a = 8; b = 6; c = -6;
Δ = b2-4ac
Δ = 62-4·8·(-6)
Δ = 228
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{228}=\sqrt{4*57}=\sqrt{4}*\sqrt{57}=2\sqrt{57}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{57}}{2*8}=\frac{-6-2\sqrt{57}}{16} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{57}}{2*8}=\frac{-6+2\sqrt{57}}{16} $
| 5x-7x-7=4 | | -17+b/8=2 | | 2x+3.50=5x+3.35 | | -9d-20d-4d-15d-10=14 | | 5-1/2r=3/4-10 | | (9x=-5)+(6x+20)= | | 4(5+2n)+6=82 | | 3x9=18+ | | x+70+119=180 | | 2+3.50x=5+3.35x | | 5/6x9/11= | | -9x-17=71 | | -8=4(1+x)-3x+8 | | 2w−6=2(w+2)−10 | | 10y+-3y+14y-9y-20y=10 | | 7(-5m+1)+7=-91 | | (9x=5)+(6x+20)= | | -2m+5=-15 | | (500/243.96)=1.03^x | | 3x+4-9x=3 | | 10b-b+2b-10b+3b=20 | | x-(0.3x)=2100 | | 7x+12=32+3 | | 28=48x | | 3p+5p+2p-6p-2=6 | | `-2(4-3x)-6x=10` | | −6(x+3)−3x=−81 | | 180=27+x+180-2x+3 | | 13=-3+s | | X+5.65=x+10.45 | | 5+66x=44x+9x | | 7y+y-2y+3=15 |